

Caterina Vernieri (FNAL & LPC Distinguished Researcher)
on behalf of the CMS experiment

Fermilab - Friday June 30, 2017 - Wine and Cheese Seminar

The Higgs boson

- A great advance in our understanding of fundamental particles and their interactions
 - a new state of matter-energy

Caterina Vernieri (FNAL)

a potential window to Beyond Standard Model (SM)

Outline

- · Higgs boson discovery at LHC
- $H \rightarrow b\bar{b}$ state of the art
- Tools for identifying H → bb at high p_T
 - b-quark identification in CMS
- Inclusive search for boosted $H \rightarrow b\bar{b}$
- Future perspectives

Standard Model Higgs Hunting: Basics

LEP+Tevatron legacy:

low-mass range [114,158] GeV

The natural width is less than 100 MeV observed peak dominated by instrumental mass resolution

Standard Model Higgs Hunting: Strategy

high energy optimal invariant mass resolution luminosity

lowest BR decay modes ↔
Excellent mass resolution

July 4th 2012, Higgs Boson discovery

The New York Times

Wednesday, July 4, 2012 Last Update: 4:00 AM ET

S DIGITAL SUBSCRIPTION: 4 WEEKS FOR 99¢.

New Particle Could Be Physics' Holy Grail

By DENNIS OVERBYE 4 minutes ago

If commend to be the elusive Higgs boson, a newly discovered particle named for the physicist Peter Higgs, above in Geneva, could explain the universe's origin.

Britain | Germany **FTSE 100** DAX 5,673.04 6,553.19 -0.26%-0.38%

Data delayed at lea

GET QUOTES

Stock, ETFs, Funds

July 4th 2012, Higgs Boson discovery

CMS and ATLAS reported independently the first observation of the Higgs boson

- 5.0σ combining γγ and ZZ alone
 - best mass resolution
 - thanks to the huge amount of LHC data we could exploit the lowest BR decay modes

Is it a SM Higgs boson?

- Mass
- Spin-parity
- Width
- The couplings to fermions and bosons
- Study the self-coupling
- Any non-SM property?

	Sensitivity (Run I+II)
H→ b̄b	~ 2 σ *
$H \rightarrow WW$	$> 5\sigma$
$H \rightarrow \tau \tau$	~ 5 σ
$H \rightarrow ZZ$	$\gg 5\sigma$
$H \rightarrow \gamma \gamma$	≫ 5σ
	* D l

^{*} Run I only

bb, largest BR for SM H (~58%) but not yet observed

Higgs at Tevatron

CDF and D0 combined results reported a broad excess in the mass range 115<m_H<140 GeV

- 3.0 σ at m_H=125 GeV
- mainly from the $H \rightarrow b\bar{b}$

Outline

- Higgs boson discovery at LHC
- $H \rightarrow b\bar{b}$ state of the art
- Tools for identifying H → bb at high p_T
 - b-quark identification in CMS
- Inclusive search for boosted $H \rightarrow b\bar{b}$
- Future perspectives

The Large Hadron Collider

2010-2012, ~25fb⁻¹ delivered in Run I at 7 and 8 TeV 2015-2016, ~40 fb⁻¹ delivered in Run II at 13 TeV 2017, Run just started. So far CMS recorded >5 fb⁻¹

- Two-jets final state
- Overwhelming background from QCD production of b quarks
 - 10⁷ larger

Caterina Vernieri (FNAL)

Search for $gg \rightarrow H \rightarrow b\bar{b}$ historically **deemed impossible**

4%

H

Status of H(bb) at LHC

The LHC combination of the Run 1 ATLAS and CMS analyses resulted in a significance of $\mathbf{2.6\sigma}$ (3.7 σ) **observed** (expected)

VH is the most sensitive channel for $H(b\bar{b})$

 μ = observed signal, in units of the amount predicted from the SM

Outline

- Higgs boson discovery at LHC
- $H \rightarrow b\bar{b}$ state of the art
- Tools for identifying $H \rightarrow b\bar{b}$ at high p_T
 - b-quark identification in CMS
- Inclusive search for boosted $H \rightarrow b\bar{b}$
- Future perspectives

b tagging in CMS

~ 1/Y b quarks hadronize in "jets" of particles **B** hadron direction • Jets with $p_T > 30$ GeV and $|\eta| < 2.4$ B-hadron decay tracks are mostly Inclusive Vertex Finder (IVF) to produced in a cone in the B reconstruct secondary vertices hadron flight direction Independent of the jet direction → B flight ~ jet direction

b tagging in CMS

b-tagging algorithms combine with a **multivariate approach** the information from:

- impact parameter significance of charged-particle tracks
- the presence of a **lepton** in the jet and its properties
- the presence and properties of reconstructed secondary vertices

Performance of b-tagging in CMS

optimal working point for a \mathbf{H} to $\mathbf{b}\bar{\mathbf{b}}$ search search has 70% b efficiency and 1% mistag probability

boosted H(bb)

Caterina Vernieri (FNAL)

 $dR(b\bar{b}) \sim 2m_H/p_T$

Fermilab - Friday June 30, 2017 - Wine and Cheese Seminar

21

b-tagging, multiple approaches

- ·Based on the standard btagging algorithm
- Not designed for tagging two b's in the same jet

sub-jet b-tagging

- Defines sub-jets
- Standard b-tagging algorithm applied to each subjet

- double-b tagger

 •Identifies the two B hadron decay
- chains from b and b within the same fat jet.
- ·It does not define sub-jet but uses N-jettiness axes

double-b tagger

13 TeV, 2016

- · Combines tracking and vertexing information with a multivariate approach
- · 27 observables are used
- · It targets the bb signal aiming to be:
 - · mass independent
 - · p_T independent
 - training strategy is designed to cover a very wide p_T range
 - · inputs are chosen to avoid p_T correlation
 - · no dR-like variables, no substructure info

Efficiency vs. Mistag rate

The mistag rate is approximately flat across the p_T range by design Critical point for searches (background estimate)

H-tagging

The boosted H(bb) signal is identified as large cone size jets:

- $\cdot R=0.8$
- · PUPPI (PileUp Per Particle Id) is used to mitigate pile up effects

H/Z(bb)

Our tools:

- · **b-tagging** to reconstruct the two B hadrons from the b and b within the same fat jet
- · jet mass compatibility with the Higgs
- · the composite nature of the jet using substructure

background 9/g

Jet mass

- Provides good separation between W/Z/H-jets from q/g jets
- Grooming removes soft and wide-angle radiation (soft drop/modified mass soft drop)

$$\frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$$
 $\beta = 0$, $z_{\text{cut}} = 0.1$

Jet Substructure

- Measures the degree to which a jet can be considered as composed of N prongs
- Energy correlation functions are sensitive to N-point correlations in a jet
 - A 2-pronged jet will have e₃<e₂

$$N_2 = \frac{e_3}{(e_2)^2}$$

We use a **mass-decorrelated** version for the background

$$N_2^{DDT} = N_2 - N_2 (\text{cut at } 26\% \text{ QCD eff.})$$

We use a **mass-decorrelated** version for the background

$$N_2^{DDT} = N_2 - N_2 (cut at 26\% QCD eff.)$$

The **scaling variable** for QCD jets ρ is used in the characterization of the correlation of jet substructure variable

We use a **mass-decorrelated** version for the background

N2 sculpts the jet mass distribution

We use a **mass-decorrelated** version for the background

Phys. Rev. Lett. 100 (2008) 242001

We conclude that subjet techniques have the potential to transform the high- p_T WH, ZH(H \rightarrow b \bar{b}) channel into one of the best channels for discovery of a low mass Standard Model Higgs at the LHC.

now we search for <u>inclusive</u> H to bb with these new tools ...

Search for inclusive H to bb

- · We can access this process in the boosted dijet topology
- Use initial state jet to get above the trigger threshold
- · Look for boosted H boson in a single jet mass distribution
 - · Use the Z boson as Standard Model candle
 - b-tagging to disentangle W/Z

Event Selection

- Online selection asks for a high p_T single jet or large hadronic activities
 - $p_T > 360 \text{ GeV or } \Sigma p_T > 800/900 \text{ GeV}$
- Offline: Highest pt jet:
 - $p_T > 450 \text{ GeV } |\eta| < 2.5$,
 - jet soft drop mass $(m_{SD}) > 40 \text{ GeV}$
- Lepton veto, E_T^{Miss} veto

Event Selection

Substructure: two prongs discrimination

double-b tagger

Fermilab - Friday June 30, 2017 - Wine and Cheese Seminar

After all selections

 Analysis is inclusive in Higgs production mode

Caterina Vernieri (FNAL)

Dominant contribution in signal region is ggH

Background composition

Backgrounds

- QCD (~90%)
- tt+jets (3%), normalization from a dedicated control region
- W/Z+jets (5%)
 single-t, VV (<1%)

data

simulation

- Jet mass shape for multijets events is derived in data
- From events "failing" the b-tag
 requirement with a *transfer factor*

- Jet mass shape for multijets events is derived in data
- From events "failing" the b-tag
 requirement with a *transfer factor*

- Jet mass shape for multijets events is derived in data
- From events "failing" the b-tag requirement with a *transfer factor*
 - as function of the jet mass and pt

- · Jet mass shape for multijets events is derived in data
- From events "failing" the b-tag requirement with a *transfer factor* as function of the **jet mass and p**_T

$$N_{pass}^{QCD}(m_{SD}, p_T) = R_{p/f}(\rho, p_T) \times N_{fail}^{QCD}(m_{SD}, p_T)$$

· Jet mass shape for multijets events is derived in data

• From events "failing" the b-tag requirement with a *transfer*

factor as function of the jet mass and pt

$$N_{pass}^{QCD}(m_{SD}, p_T) = R_{p/f}(\rho, p_T) \times N_{fail}^{QCD}(m_{SD}, p_T)$$

 The transfer factor is determined simultaneously with the signal extraction

W/Z+jets simulation

Caterina Vernieri (FNAL)

- LO simulations for the W/Z+jets are corrected using pt-dependent:
 - **NLO QCD** k-factors
 - **NLO electroweak** k-factors
- Associated uncertainties are 10% (QCD) and 15-35% (EWK)

ggH simulation at high pt

ArXiv:1410.5806, ArXiv:1609.00367

ArXiv:1408.5325, ArXiv:1302.6216 ArXiv:1504.07922, ArXiv:1505.03893

ArXiv:1610.07922

- Other CMS Higgs results use **Powheg**: 1 jet + $m_t = \infty$
- · We want to account for both the effects of higher order corrections and for the finite top mass

No real NLO + finite m_t calculation available in the literature above $p_T^H > 300$ GeV

ggH simulation at high pt

ArXiv:1410.5806, ArXiv:1609.00367 ArXiv:1408.5325, ArXiv:1302.6216 ArXiv:1504.07922, ArXiv:1505.03893

ArXiv:1610.07922

- Other CMS Higgs results use **Powheg**: 1 jet + $m_t = \infty$
- We want to account for both the effects of higher order corrections and for the finite top mass

A multi-correction approach is adopted

- LO H+0-2 jet, finite m_t
- NLO H+1 jet finite m_t up to 1/m_t⁴ expansion
- NNLO H+1jet, $m_t = \infty$

$$GF H(NNLO + m_t) = (1 \text{ jet } m_t = \infty) \times \frac{MG \ LO \ 0 - 2 \text{ jet } m_t}{(1 \text{ jet } m_t = \infty)} \times \frac{NLO \ 1 \text{ jet } m_t}{LO \ 1 \text{ jet } m_t} \times \frac{NNLO \ 1 \text{ jet } m_t = \infty}{NLO \ 1 \text{ jet } m_t} \times \frac{NNLO \ 1 \text{ jet } m_t = \infty}{NLO \ 1 \text{ jet } m_t = \infty}$$

ggH pt reweighting finite mt + NNLO

- This is the first time an (approximate) NLO H+0,1,2 jet merged with finite top mass is attempted
- Estimate k-factor of ~ 1.3 for H p_T > 450 GeV

Results are stable under these variations and also provided without p_T reweighting

Systematics

Systematic uncertainty source	Type (shape or normalization)	Relative size (or description)
QCD transfer factor	both	profile $a_{k\ell}$ and QCD normalization
Luminosity	normalization	2.5%
V-tag $(N_2^{1,DDT})$ efficiency	normalization	4.3%
Muon veto efficiency	normalization	0.5%
Electron veto efficiency	normalization	0.5%
Trigger efficiency	normalization	4%
Muon ID efficiency	shape	up to 0.2%
Muon isolation efficiency	shape	up to 0.1%
Muon trigger efficiency	shape	up to 8%
tt normalization SF	normalization	from 1 <i>μ</i> CR: 8%
t t double-b mis-tag SF	normalization	from 1μ CR: 15%
W/Z NLO QCD corrections	normalization	10%
W/Z NLO EWK corrections	normalization	15% - 35%
W/Z NLO EWK ratio decorrelation	normalization	5% - 15%
double-b tagging efficiency	normalization	4%
Jet energy scale	normalization	up to 10%
Jet energy resolution	normalization	up to 15%
Jet mass scale	shape	shift $m_{\rm SD}$ peak by $\pm 0.4\%$
Jet mass resolution	shape	smear $m_{\rm SD}$ distribution by $\pm 9\%$
Jet mass scale $p_{\rm T}$	normalization	$0.4\%/100{ m GeV}(p_{ m T})$
Monte Carlo statistics	normalization	-
H p_T correction (gluon fusion)	both	30%

Z signal extraction

 The extraction of the Z signal compatible with the SM expectation would validate the H signal extraction and H-tagging approach

Z results

- Observed significance for the Z signal is 5.1σ (5.8 σ expected)
 - · compatible with SM expectation
- First Observation of the Z(bb) in the one-jet topology
- This validates the H signal extraction and H-tagging approach

Simultaneous fit of the Z and H signals

	Н	Z
Observed best fit	$\mu_{\rm H} = 2.3^{+1.8}_{-1.6}$	$\mu_{\rm Z} = 0.78^{+0.23}_{-0.19}$
Expected significance	$0.7\sigma (\mu_{\rm H} = 1)$	$5.8\sigma (\mu_{\rm Z} = 1)$
Observed significance	1.5σ	5.1σ

Observed significance for the Z and H signals is compatible with SM

Sensitivity per pt category

Sensitivity per pt category

Caterina Vernieri (FNAL)

Sensitivity per pt category

Measured cross section

• The measured cross sections for Z+jets and Higgs for jet $p_T > 450$ GeV are:

$$\sigma_Z = 849 + 257/-209 \text{ fb}$$

 $\sigma_H = 74 + 51/-49 \text{ fb}$

Broken down into:

$$\sigma_Z = 849 + 155/-155$$
 (stat.) +140/-205 (syst.) $\sigma_H = 74 + 48/-48$ (stat.) +10/-17 (syst.)

Compatible with SM within uncertainties

Outline

- Higgs boson discovery at LHC
- $H \rightarrow b\bar{b}$ state of the art
- Tools for identifying H → bb at high p_T
 - b-quark identification in CMS
- Inclusive search for boosted $H \rightarrow b\bar{b}$
- Future perspectives

Sensitivity to BSM

- Probing gluon coupling vs top coupling
- At high p_T effective vertex dominated by top quark
 - Directly probe modifications in top quark coupling

Current Higgs pt measurement

Conclusions and perspectives

- First search for $gg \rightarrow H \rightarrow b\bar{b}$ in boosted topology
 - First observation of $Z(b\bar{b})$ in single jet topology, 5.1σ
 - The observed significance for the $H(b\bar{b})$ is 1.5σ
 - Cross sections are measured and agree with SM
- This search looks at previously unexplored regions of phase space and opens a new strategy to:
 - search for Higgs boson to bb

Caterina Vernieri (FNAL)

- · probe BSM contributions to the Higgs at very high pt
- investigate **new physics final states** involving high p_T Higgs boson

thank you!

-Additional Material

Higgs at LHC

Challenges of the H(bb) mode at the LHC

Comparison with one of the discovery channels

	$H \rightarrow 4\ell$	$H \rightarrow b\bar{b}$
BR	0.03%	58%
mass resolution	1%	10%
signal efficiency	30%	1.3%
S/B	2	0.05

H(bb) searches need:

- b-jets identification
- improve m(bb) resolution
- exploit all possible information from the event to improve S/B

VH(bb)

S/B at LHC is 2.5x lower than at Tevatron

H(bb)-jet

Boosted bosons

Bosons produced with high p_T merge into single large-R jet (0.8 CMS, 1.0 ATLAS)

B properties useful for its tagging

b quarks hadronize

Measurable lifetime

ct~ 500 µm
$$\rightarrow$$
 $\beta\gamma$ ct ~ 5mm @ 50 GeV

- Large mass (~5 GeV)
- · The weak b-decay often produces leptons

BR:
$$B \rightarrow l + v + X$$
 ~ 25%
 $B \rightarrow D \rightarrow l + v + X'$ ~ 20% tertiary vertex

High momentum transferred to the B hadron

Fraction of the original b-quark momentum carried by the B $\langle x_B \rangle \sim 0.7$

The B tag picture

Combined algorithms

The **Combined Secondary Vertex** through multivariate technique combines (CSVv2)

Track information

• 3D IP significance of the most energetic tracks

Vertex information

The **Combined Multivariate Algorithm** (cMVAv2) algorithm combines:

CSVv2 and soft lepton taggers

Muon Tagged jets

Good compatibility between efficiency measured with:

- muon tagged jets from multijet events
- b-jets from ttbar

Top pt reweighting

Applying 13 TeV top p_T reweighting

VBF H reweighting

N3LO for VBF have 5-10% effect in our phase space

Jet mass grooming

Efficiency vs. Mistag rate

Mistag is reduced by more than 40% at 30% signal efficiency (~ tight working point)

Performance

The mistag rate is approximately flat across the p_T range by design

Critical point for searches (background estimate)

Fermilab - Friday lune 30, 2017 (Wine and Cheese Seminar)

Efficiency measurement in data

- Since there is no $H/Z(b\bar{b})$ signal (yet!) we use:
 - g(bb) jets as a proxy to measure the signal efficiency
- Jet selection has been designed to ensure jets are signal-like
 - High AK8 p_T jet ($p_T > 250 \text{ GeV}$)
 - double-muon tagged jets (muon with $p_T > 7$ GeV)
 - mass cut (>50 GeV)

Z(bb) by the end of the talk

Efficiency measurement in data

Associated **uncertainty** varies from **3 to 5**% depending on the different tagging efficiency

Jet Substructure

- · Measures the degree to which a jet can be considered as composed of N prongs
- Energy correlation functions are sensitive to N-point correlations in a jet
 - A 2-pronged jet will have e₃<e₂

$$N_2^{\beta} = \frac{2e_3^{\beta}}{(1e_2^{\beta})^2}$$

$$\begin{aligned}
&1e_2^{\beta} = \sum_{1 \leq i < j \leq n_j} z_i z_j \Delta R_{ij}^{\beta} & z_i = \frac{p_{T_i}}{\sum_{j \in \text{ jet }} p_{T_j}} \quad \beta = 1 \\
&2e_3^{\beta} = \sum_{1 \leq i < j < k \leq n_j} z_i z_j z_k \min \left\{ \Delta R_{ij}^{\beta} \Delta R_{ik}^{\beta}, \Delta R_{ij}^{\beta} \Delta R_{jk}^{\beta}, \Delta R_{ik}^{\beta} \Delta R_{jk}^{\beta} \right\}
\end{aligned}$$

N2^{1,DDT} efficiency measurement

• Efficiency of the N₂^{1,DDT} is measured in data using merged W jets from tt events

- efficiency SF = ε_{Data} / ε_{MC} = 0.993 +/- 0.043
- mass scale SF = $m_{Data} / m_{MC} = 1.001 +/- 0.004$
- mass responditional Stress of Data / One and Cheese strain Q.09

Background composition

Backgrounds

- Multijets
- tt+jets,
 normalization from
 a dedicated control
 region
- W/Z+jets
- single-t, Diboson

data

MC

Event Selection

Transfer factor

- If the double-b tagger were completely uncorrelated from jet p_T and m_{SD} , the transfer factor would be flat
 - Taylor expand $R_{p/f}$ in ρ and p_T

$$\begin{split} N_{pass}^{QCD}(m_{SD}, p_{T}) &= R_{p/f}(\rho, p_{T}) \times N_{fail}^{QCD}(m_{SD}, p_{T}) \\ N_{pass}^{QCD}(m_{SD_{i}}, p_{T_{j}}) &= \left(\sum_{k,\ell} a_{kl} \rho_{ij}^{kl} p_{T_{j}}^{\ell}\right) \times N_{fail}^{QCD}(m_{SD_{i}}, p_{T_{j}}) \end{split}$$

• 23 bins in m_{SD} from 40 to 201 GeV and 6 bins in p_T from 450 to 1000 GeV

Signal extraction

Signal extraction and background estimation performed simultaneously

$$\mathcal{L}(\text{data}|\mu, \boldsymbol{\theta}) = \prod_{i,j} \text{Poisson} \left(N_{\text{fail},i,j}^{\text{data}} | N_{\text{fail},i,j}^{\text{QCD}} + N_{\text{fail},i,j}^{t\bar{t}} + N_{\text{fail},i,j}^{V} + \mu \ N_{\text{fail},i,j}^{H(b\bar{b})} \right)$$

$$\times \prod_{i,j} \text{Poisson} \left(N_{\text{pass},i,j}^{\text{data}} | N_{\text{pass},i,j}^{\text{QCD}} + N_{\text{pass},i,j}^{t\bar{t}} + N_{\text{pass},i,j}^{V} + \mu \ N_{\text{pass},i,j}^{H(b\bar{b})} \right)$$

$$N_{\text{pass}}^{\text{QCD}}(m_{\text{SD}_{i}}, p_{\text{T}_{j}}) = \left(\sum_{\mathbf{k},\ell} a_{\mathbf{k}l} \rho_{\mathbf{i}\mathbf{j}}^{\mathbf{k}l} p_{\text{T}_{j}}^{\ell} \right) \times N_{\text{fail}}^{\text{QCD}}(m_{\text{SD}_{i}}, p_{\text{T}_{j}})$$

- The coefficients akl are determined from the fit
- Based on F-test, a 2nd order polynomial in ρ
 and 1st order in p_T is used.

Signal extraction

Signal extraction and background estimation performed simultaneously

$$N_{\mathrm{pass}}^{\mathrm{QCD}}(m_{\mathrm{SD_{i}}}, p_{\mathrm{T_{j}}}) = \underbrace{\left(\sum_{k,\ell} a_{kl} \rho_{ij}^{kl} p_{\mathrm{T_{j}}}^{\ell}\right)}_{k,\ell} \times N_{\mathrm{fail}}^{\mathrm{QCD}}(m_{\mathrm{SD_{i}}}, p_{\mathrm{T_{j}}}) \qquad \underbrace{\sum_{k,\ell} b_{\mathrm{poss}}^{\mathrm{1000}} p_{\mathrm{T_{j}}}^{\mathrm{QCD}}}_{\mathrm{800}}$$

- The coefficients a_{kl} are determined from the fit
- Based on F-test, a 2nd order polynomial in ρ and 1st order in p_T is used.

tt enriched control region

- Loose muon with $p_T > 55$ GeV, $|\eta| < 2.1$ in opposite hemisphere:
 - $|\phi(\mu) \phi(AK8 \text{ jet})| > 2\pi/3$
- One AK4 PUPPI jet with medium CSVv2 b-tag, with $p_T > 50$ GeV, $|\eta| < 2.5$, and
 - Δ R(AK4 b-tag, AK8 jet) > 0.8
- Lepton: Veto the presence of identified loose electrons and loose hadronic taus
- Two-prong AK8 PUPPI jet (p_T > 400 GeV, m_{SD} > 40 GeV and $|\eta| < 2.4)$
 - $N_2^{1,DDT} < 0$

1D LL Scans

 $\mu_Z = 0.78 - 0.14/+0.14$ (stat.) -0.13/+0.19 (syst.) $\mu = 2.3 - 1.5/+1.5$ (stat.) -0.4/+1.0 (syst.)

2D LL Scan (Asimov)

Simultaneous fit of the Z and H signals

	H	H no p _T corrections	Z
Observed best fit	$\mu_{\rm H} = 2.3^{+1.8}_{-1.6}$	$\mu'_{\rm H} = 3.2^{+2.2}_{-2.0}$	$\mu_{\rm Z} = 0.78^{+0.23}_{-0.19}$
Expected significance	$0.7\sigma (\mu_{\rm H} = 1)$	$0.5\sigma (\mu'_{\rm H} = 1)$	$5.8\sigma (\mu_{\rm Z} = 1)$
Observed significance	1.5σ	1.6σ	5.1σ

Results

VH, Event Topology

- ▶ H→ $b\bar{b}$ at LHC is searched in events where H is produced in association with a W or Z boson with high boost (~ 100 GeV)
 - events are triggered by the leptonic decay of the W/Z (e, μ , MET)
 - multi-jet QCD background is highly suppressed

Quick look at the backgrounds

VH example

Quick look at the backgrounds

VH example

Quick look at the backgrounds

VH example

irreducible backgrounds **0-lepton (MET)** 1-lepton [e,μ,τ] 2-OSSF leptons [ee,µµ] and diboson, of course Fermilab - Friday June 30, 2017 - Wine and Cheese Seminar

VH, Analysis Strategy

Key points:

- 1. Extract normalization for the dominant backgrounds from the data V+0b/1b/2b and top pair production
- 2. b-jet energy specific corrections (regression)
- 3. A multivariate analysis, BDT

VH, Results

VH(bb) reported an excess of 2.1 σ in agreement with SM H expectation at 125 GeV

- $\checkmark \mu = \sigma / \sigma_{SM} = 1.0 \pm 0.5$
- ✓ All modes are compatible
- ✓ most sensitive result, to be compared to

CDF
$$\mu = \sigma/\sigma_{SM} = 2.5 \pm 1.0$$
 D0 $\mu = \sigma/\sigma_{SM} = 1.2 \pm 1.1$

D0
$$\mu = \sigma/\sigma_{SM} = 1.2 \pm 1.1$$

D0+CDF
$$\mu = \sigma/\sigma_{SM} = 1.95 \pm 0.75$$

